
Design Project

Department of Computer Science

Design Report - TA Database

Authors:
Arda Konça
Ervīn Zvirbulis
Marius Pană
Mark Troicins
Vladislav Mukhachev

Client & Project Supervisor:
David Huistra

April 19, 2024

Abstract..4
Chapter 1..5

Introduction..5
1.1 Current Methodology of Officers.. 5
1.2 Purpose of the Proposed System..5
1.3 Content Order of the Design Report.. 6

Chapter 2..7
Domain Analysis..7
2.1 Introduction to the Domain..7
2.2 General Knowledge of the Domain... 7
2.3 Client, Users, and Interested Parties.. 7
2.4 Procedure of the Current Situation.. 7
2.5 Commonalities of UT Software...8
2.6 Software Environment... 9
2.7 Conclusions..9

Chapter 3..10
System Proposal...10
3.1 Requirements Proposal.. 10
3.2 Mock-ups Proposal.. 11
3.3 System Introduction... 11
3.4 Results of the Meetings..12

Chapter 4..13
Requirements... 13
4.1 Requirement Specification...13

4.1.1 Agile Project Management Approaches for Requirement Specification............13
4.1.2 Requirements Formulation... 13
4.1.3 Requirements Prioritization.. 13

4.2 Requirement Analysis..14
4.2.1 Stakeholder Requirements.. 14
4.2.2 System Requirements... 16

Chapter 5..24
Global design... 24
5.1 Global Design Choices.. 24

5.1.1 Revised Work Procedure...24
5.1.2 Architectural Design Choices... 25

5.1.2.1 Separation of front and back..26
5.1.2.2 Single-page application (SPA)...26
5.1.2.3 REST API.. 26
5.1.2.4 Docker..26

1

5.1.3 Technological Stack..26
5.1.3.1 Frontend:..27
5.1.3.2 Backend:.. 27
5.1.3.3 Deployment..28

5.2 System Pages... 30
5.2.1 Module Management Page... 30

5.2.1.1 Applications Tab.. 30
5.2.1.2 Student Jobs Tab.. 30
5.2.1.3 Module Settings Tab.. 31

5.2.2 Student List Page.. 31
5.2.3 General Data Page.. 32

Chapter 6..33
Detailed Design..33
6.1 System Description.. 33
6.2 Design Choices.. 34

6.2.1 Data model..34
6.2.1.1 Study Programme.. 34
6.2.1.2 Badge... 35
6.2.1.3 Study Unit.. 36
6.2.1.4 Module... 36
6.2.1.5 User Role... 36
6.2.1.6 Student... 37
6.2.1.7 Applicants Import.. 38
6.2.1.8 Student Module Eligibility...38
6.2.1.9 Job..39
6.2.1.10 Export...39

6.2.2 API call structure.. 40
6.2.3 User Interface (Connect with figures).. 40
6.2.4 User Experience..42

6.2.4.1 Badges..42
6.2.4.2 Information relevance.. 43
6.2.4.3 Import and Export..43
6.2.4.4 Storage and state management...44

Chapter 7..45
Testing..45
7.1 Test Plan...45

7.1.1 Frontend Testing Plan... 45
7.1.2 Backend testing plan...47

7.2 Test Results.. 48
7.2.1 Frontend testing results...48
7.2.2 Backend testing results... 48

2

Chapter 8..50
Future Planning..50
8.1 Utilization and Support of the System...50
8.2 University-wide Enrollment.. 50
8.3 Expanding access to the system...50
8.4 Remainder Requirement Integration..51

Chapter 9..52
Evaluation.. 52
9.1 Planning... 52
9.2 Responsibilities..52
9.3 Team Evaluation.. 53
9.4 Final Result.. 53
9.5 Conclusion... 54

Appendices...55
Appendix A..55

Figma Design Mock-ups..55
Appendix B.. 57

Final Design Pages...57
Module Management... 57
Student List.. 59
General Data.. 60

Appendix C.. 62
Swagger Screenshots..62

3

Abstract

The final project report is written as part of the “Design Project” course at the University of
Twente. A web application system called the “Teaching Assistant (TA) Database” has been
developed for the Module Supports and Module Coordinators to mainly arrange the
formalities of determining the module eligibility of TA applicants and creating their job
contracts. This report demonstrates the design process of the developed system, the planning
of each system development phase, information about the aims and objectives of the
proposed system, and how it could be a better tool to use than the current system the Module
Supports and Module Coordinators utilize. If the proposed system satisfies all the functional
requirements that the client has set, it is planned to be used by the University of Twente in
the future for the optimal efficiency and convenience of usability of the designed web
application. The layout of this report has used the BOZplanner report on Canvas as a
template for reference.

4

Chapter 1

Introduction

At the University of Twente, there is a need for Teaching Assistants (TAs) to play a role in
the educational modules to assist the students’ understanding of topics covered within a
module. The TAs are not only responsible for assisting students but can also grade the
assignments/exams of students depending on their past experiences. To allow the process of
involving such TAs within the modules to improve the quality and pace of education, the
university gives responsibilities to the Module Support and Module Coordinator officers.
One of these responsibilities is determining which applicant(s) could be a good fit to become
a TA for a certain module considering their academic qualities.

1.1 Current Methodology of Officers
To determine the qualification, the officers first gather information from the students who
volunteer to become a TA by conducting applicant surveys for certain modules. Via the
filled-in surveys, they check all the relevant information about an applicant regarding their
past academic achievements and whether they need a work permit. However, even though the
background information checks are quite straightforward, the process becomes tedious since
determining the eligibility of a TA process is manually done and held on Excel sheets at the
moment.

1.2 Purpose of the Proposed System
To make the manual check activities faster and more efficient inside a safe and reliable
system, the officers have decided to have a web application created that allows them to easily
determine the eligibility of TA applicants by multiple users on different machines. During the
eligibility assignment process, the proposed system aims to automatically find, retrieve, and
save information related to an applicant after being added by a Module Support officer on the
page where applicants’ eligibility is determined. On this page, the Module Support and
Module Coordinator officers could add their comments for an applicant as well as assign
them training(s) that an applicant needs to follow. Ultimately, this application aims to resolve
the current problem with manual applicant background information checks by utilizing a
database for persistent storage. In addition to that, the creation of job contracts for the
selected applicants and the hiring process aspect is also determined in the development
phases of the proposed web application for the officers to easily input the information of how
many total hours a selected TA should work within a module.

5

1.3 Content Order of the Design Report
To address all the issues regarding the current methodology that the officers follow, more
detailed information will be provided in Chapter 2 to address how the proposed system could
be beneficial to use. In Chapter 3, the proposal of the system and high-level descriptions will
be described. In Chapter 4, the functional and non-functional requirements of the proposed
system, the requirement prioritization, and the stakeholder and system requirements will be
determined. In Chapter 5, the global design choices and the design considerations will be
mentioned. In Chapter 6, detailed architectural design choices such as user interface design
and the taken design decisions to enhance the user experience will be elaborated. In Chapter
7, the approaches for testing both frontend and backend components will be considered as
well as their test results to understand the overall quality of the functionality of the proposed
web application. In Chapter 8, the future planning for the system will be taken into account
to possibly further improve the usability and effectiveness of the proposed system. Lastly, in
Chapter 9, the evaluation of the overall planning, responsibilities of team members, and the
final functional version of the proposed design project will be inspected to derive
conclusions.

6

Chapter 2

Domain Analysis

This chapter will intricately present the system’s domain in its current state, through which
the highlighted problems might become self-evident. A keen awareness of such matters will
ground the project’s direction and guardrails for the topical and prospective stages of
development.

2.1 Introduction to the Domain
The domain in question involves the frequent distribution of student information between
Module Support and Module Coordinators to add, modify, and delete student identifiers, their
module eligibility, and potential contract details. Therefore, the system must enable staff of
both roles to manipulate their pertinent data.

2.2 General Knowledge of the Domain
Each faculty has a different Module Support staff, so the requirements of a TA database can
vary among its users. Grasping the differences and commonalities between desiderata is
crucial to effectively deploying the application across the entire university.

2.3 Client, Users, and Interested Parties
The primary stakeholder is Tina Holtkamp-Marti, representative of the Module Support role
from the TCS study programme, of the EEMCS faculty, however, the system is expandable
to be used by staff members from all the university’s faculties. The possible user roles of the
system are Module Coordinator (MC) and Module Support (MS).

2.4 Procedure of the Current Situation
Presently, the Module Coordinators and Module Support exchange student data tables over
email, which is a privacy hazard. Additionally, we have captured the different activities
involved in hiring TAs in Figure 2.1, where it can be seen that the process of deciding a
student’s total and weekly work hours can be a tedious and highly inefficient process, leading
to a loop with an indeterminate end. This happens because a Module Coordinator is the one
responsible for assigning their module’s future TAs’ total work hours and a Module Support
is responsible for validating the chosen amount of hours after converting them into weekly
hours. Moreover, Module Support must check the validity of all received student data from
the Module Coordinator each module, and correct all erroneous information. All of these

7

steps involve a lot of manual labor, leading to much time and effort being spent rather
wastefully.

Figure 2.1: The current activities of all participating agents in hiring students as TAs.

2.5 Commonalities of UT Software
The system was designed to share the aesthetics of the University of Twente’s currently
deployed application suite to maintain navigational user affinity. Direct inspiration was taken
from Horus, Canvas, and Khonsu respectively, by integrating the UT SSO Authentication
and replicating common elements between their web page layout designs.

8

2.6 Software Environment
The project supervisor has some preference specifications, such as building an SQLite or
PostgreSQL database, utilizing the Django REST framework under the Python programming
language for the back end, a front-end SPA with Vue.js, and using the UT GitLab repository.
Some additional options were offered, such as having a Spring Boot back end instead, or
using React or Angular for the front end, but our team stuck to the favored development
environment to be consistent with the rest of the university’s suite of applications, and as all
the team members had little to no experience with either tool, relying instead on concurrent
on-the-job learning and the supervisor’s occasional guidance during development.
Additionally, data model development started with SQLite, with the hope to switch to using
PostgreSQL near deployment, but after considering there will not be many application users
at any one time due to its target audience, the database engine library was maintained.

2.7 Conclusions
In conclusion, the system’s domain analysis exposed the application’s motivations, founded
on the ineffectual procedure of the involved stakeholders, which, in turn, have also been
recognized to have their needs catered to.

9

Chapter 3

System Proposal

In this chapter, the proposal for the system will be provided by including brief information
about the requirements set by the client and a user, the proposed mock-ups, an introduction to
the system, and lastly the findings of the continuous meetings.

3.1 Requirements Proposal
During the project’s development phases, various on-campus meetings were held with the
client to ascertain whether the developers firmly grasped the needs and requirements of the
client for the proposed system. In the earliest phase, where the concept of the project was
introduced, the client held a presentation about how the system is expected to function from
the perspective of Module Supports and Module Coordinators by referring to their current
issues with the way they use Excel sheets to perform their background information checking
task when determining the eligibility of applicants. Although the discussed expectations and
requirements were explained to determine the eligibility task and job assignments of selected
applicants in a clear way to the developers, there occurred times when developers
misunderstood some of the required functional requirements because of the complex
relational nature between processes and actions that the users should be able to perform. To
fix those misunderstandings, the client and the developers ensured being on the same page by
communicating throughout the project’s development by following the Agile methodology to
avoid any possible delays in delivering a satisfactory functional software product.

At the end of the day, it has been acknowledged that the proposed web application should
support the option to choose different academic years, study programmes, and study modules
for the application to be used at any time by the officers to capture data about the students.
To capture data of the students and register every change, it is decided to develop the concept
of “badges” inside the web application. The concept simply refers to the
training(s)/specifications (such as passing a certain module, requiring a work permit, etc.)
that an officer can assign while determining which applicant could be a TA on the designated
TA application page where they determine the eligibility of TA applicants for specific
modules. With the support of including such a concept, the officers would easily be able to
store relevant information for each of the applicants and they would easily manipulate the
records of applicants and/or see/edit which applicant needs to follow which training, which
modules they have passed/became a TA in the past. If the mentioned ideas could be done in
the proposed web application, then this would allow officers to perform their tasks easily and
reliably by being able to assign a dynamic list of student attributes instead of assigning a
hardcoded fixed list of student attributes in the system which optimizes the efficiency of the
determining eligibility process.

10

On top of that, additional considerations have also taken place for the job contracts that need
to be created for the eligible applicants. The developers suggested that it would be a good
idea to have officers have the ability to import the total hours for a TA who could work in a
specific module in an Excel format to improve the pace of inputting information in the
applicants’ job contracts in another dedicated web page. The details of the web pages and
their benefits will be given in detail in Chapter 5.

3.2 Mock-ups Proposal
In the meetings, the mentioned requirements of the client were taken into account when
trying to create different designs of how the software product should look from the users’
perspectives in terms of the user interface of the proposed web application. A team member
suggested the front-end developers follow the hand-made templates that he created on the
Figma application for the front-end developers to follow what kind of components could be
used in the design of the web pages. After that, the team members responsible for working on
the front end agreed to follow the constructed designs by making progress every week of the
project development phase. To follow and verify the developers were on the right track with
how the user interface was starting to look, the mock-ups from Appendix A were presented
to the client for feedback on the web pages' design. With the support of showcasing
mock-ups, it was made available for the client to observe the thoughts and decisions of the
developers to set additional (or remove) requirements for possible system usability
improvements.

3.3 System Introduction
In the project's initial phase, the client proposed a face-to-face meeting for the developers to
meet with a Module Support officer to get valid insights about the way the application shall
function from her perspective.

During the first meeting held with the Module Support officer, she mostly elaborated and
focused on mentioning her current problems with using Excel sheets in the process where she
fills in the necessary information for each TA applicant (such as which module(s)/course
component(s) an applicant has passed in the past, whether they have passed all the study
components from their first-year study, whether an applicant needs to follow a teaching
minor/facilitator training or whether an applicant needs to have a work permit into a sheet)
who would like to become a TA for the certain module(s). She highlighted that filling in
information for each applicant takes too much effort and time, and she mentioned that
working on Excel sheets leads to organizational efficiency, resilience, and security issues
considering the overall student data management. She therefore came up with some ideas of
how she would be willing to use an ideal web application to prevent the mentioned issues.

11

The developers noted down all the mentioned functional requirements within the session to
start right away working on the desired web application product. At the end of the meeting,
the technical sides of working with the given frameworks were discussed between the
developers and client, for the developers to make sure all the aspects that need to be covered
within the development of the software product were understood well.

3.4 Results of the Meetings
After the first meeting with Module Support, it was decided between the developers and the
client to organize weekly meetings to keep track of the software-wise progress of the
developers to possibly focus on/resolve the arisen issues to prevent any delay in producing
the proposed product in the given time. It is essential to state that each of the meetings with
the client (both online and on-campus) was very beneficial from the perspective of the
developers for them to understand they were on the right track. The general conclusion of the
regular meetings is the following: Conducting regular meetings critically supported the way
the development of the software components be implemented in a fast and organized manner
to satisfy the requirement of developing a system that makes the manual background
checking on a fitting interface. The client was so supportive, giving ideas of how to solve
such problems that the developers were facing from time to time. Additionally, he was so
open to being communicated.

On top of the meetings held with the client, and the first meeting held with a Module Support
officer where the developers compiled all the requirements related to the software product,
the developers wanted to conduct one more meeting with the Module Support officer again
on the product to receive her feedback to get an insight of the general satisfaction level about
the way how the developed application functions from her perspective at the very end of the
time of the project development. In the meeting, the project team first presented a
presentation about their progress and then verbally introduced the concepts (badges and
module-specific decisions related to eligibility and student jobs) that they additionally
applied to the project. After that, one of the team members did a demonstration of the
product. At the end of the session, the following feedback was received by the officer and
noted down: “The Module Support officers would like to maintain the functionality of Excel,
therefore it is a good idea to let the system allow users the ability to control most of the fields
(customizability) relevant to TA applicants.” Upon receiving the suggestion, the developers
worked on the fields relevant to the data of TA applicants (information about nationality, the
year one started their study, start date, end date, and hours per week information of their
created student job contracts) to be editable by users to follow the given feedback.

12

Chapter 4

Requirements
This chapter will present the project’s requirements, guided by the Agile methodology.

4.1 Requirement Specification
This section presents the approach to structuring the system’s requirements that best fit the
stakeholders’ demands. The utilization of Agile provided a gradual means in terms of the
appropriate way to represent the iterations.

4.1.1 Agile Project Management Approaches for Requirement
Specification
The project’s team opted for pursuing Agile management, specifically, weekly SCRUM
sessions with the coordinator, because of the wide range of stakeholder needs, a tight
deadline, and the team’s unfamiliarity with the development tools, necessitating a continuous
reassessment of timeliness and priorities, leading to a frequent reformulation, validation, and
effectuation of the requirements.

4.1.2 Requirements Formulation
Expounding upon the second chapter's stakeholder analysis, their requirements take the form
of user stories, which have been grouped into four identified feature concepts: user roles,
badge system, student management, and student jobs. Moreover, these stakeholder
requirements are scrutinized from another perspective: into more practical and detailed
system requirements.

4.1.3 Requirements Prioritization
The requirements are sorted by importance, utilizing the MoSCoW prioritization method.
They were first identified and later grouped, so not all categories will be present.
Furthermore, the MVP would have constituted every feature from Must, and the final product
aimed to have all from Should. Additionally, the four feature concepts take no priority over
one another, as they are independent, having been worked on in tandem, yet are just as
important, being ordered by logical consequence of a user’s application interaction
experience.

13

4.2 Requirement Analysis
The following is a list of stakeholder and system requirements courtesy of the stakeholders'
input during meetings. They are illustrated as user stories, divided into functional and
non-functional, and by the MoSCoW method.

4.2.1 Stakeholder Requirements
Functional requirements:
I. User roles:

A. Must
1. As a user, I want to log into the system.
2. As a Module Coordinator, after logging in, I want to select and see the

modules of the study programme that I am responsible for handling
TA applicants.

3. As a Module Support, after logging in, I want to select and see all the
modules of the study programmes that I am responsible for checking
the requirements of TA applicants.

B. Should
1. As a Module Support, a Module Coordinator should not have the

possibility to manipulate data outside their coordinated modules.
2. As a Module Support, I want to have access to other study

programmes that I am not responsible for.
C. Could

1. As a TA, after logging in, I want to modify my profile information.
2. As a TA and Module Support, I want to document my experience with

the system.
II. Badge system:

A. Must
1. As a Module Support, I want to see if a TA candidate has completed

the module they registered for.
2. As a Module Support, I want to see if a TA candidate has all first-year

credits.
3. As a Module Support, I want to see if a TA candidate requires a work

permit.
4. As a Module Support, I want to manage what completed training types

a TA candidate has.
B. Should

1. As a Module Support, I want to upload the overall grade of the module
taken by a recurring TA.

III. Student management:
A. Must

14

1. As a Module Coordinator, I want to import an Excel file of TA
candidates.

2. As a Module Support, I want to set the module eligibility of a TA
candidate.

3. As a Module Support, I want to export chosen TAs in an Excel
document.

4. As a Module Support, I want to see a recurring TA candidate’s
previous teaching experience.

B. Should
1. As a Module Support, I want to manage the details of a TA candidate,

such as their study programme and cohort.
2. As a Module Support, I want to manage eligibility comments

attributed to TA candidates of a module.
3. As a Module Support, I want the system to flag certain TA

applications in mild or harsh warnings, depending on the eligibility
requirement violation severity, rather than having them disregarded.

C. Could
1. As a Module Support, I want students who graduated to automatically

be archived.
2. As a Module Coordinator, I want to distribute my module’s TAs

between different tasks.
IV. Student jobs:

A. Must
1. As a Module Support, I want to view a TA’s working hours.
2. As a Module Coordinator, I want to import an Excel file of TA jobs.

B. Should
1. As a Module Coordinator, I want to specify working hours and their

period for selected TAs of a module.
C. Could

1. As a Module Support, if I decide to raise an issue with a proposed TA
contract, the system could send an email about this rejection to the
Module Coordinator.

2. As a Module Coordinator, I want to see each of my module’s TAs’
logged hours.

Non-functional requirements:
A. Must

1. As a user, I want the system to be available at all times.
2. As a user, I want the web application to be safe and secure.
3. As a user I want the application to have very low page load times.
4. As a user, I want the system’s tables to function with incomplete information.

B. Should

15

1. As a user, I want the visual design of the web application to be easy and
pleasant to use.

C. Could
1. As a user, I want the web application to have the feature of dark mode.

4.2.2 System Requirements
Functional requirements:
I. User roles:

A. Must
1. The system must enable Module Support or Module Coordinator users

to log into the system.
Description:
The standard access of The University of Twente’s staff to the
institution’s applications has been through its SAML SSO
Authentication, through which user roles can be assigned. For
our system to be integrated into the university’s suite of
applications, a consistent design is required. The functionality
implementation was achieved quite early with okta, in the fifth
week, and the final modifications were made after the
application’s deployment, at the end of development.

2. The system must grant Module Support users access to all modules
within a study programme.

Description:
While Module Support users have access to all study
programmes, they generally only work on one, and a single
module at a time, but must still always have access to all a
programme’s modules. Therefore, each Module Support acts as
an admin of the system; the default way to view all of the
application’s functionality, which was used for the majority of
its development. This feature was completed in week five.

3. The system must have a mechanism through which a Module Support
or Module Coordinator user can select a “Study Programme”,
“Academic Year”, and “Study Unit” to be able to do their pertaining
TA application management operations for each module.

Description:
Both user roles must have access to modules, where applying
students are handled, this being a core feature of the system.
When there isn’t already a module entry with these three
specifications, a new one will have to be created. This feature
was completed in week six.

B. Should

16

4. The system should have a section in which a Module Support or
Module Coordinator user can modify a module’s properties, such as its
name, start, and end date.

Description:
Users should also be able to modify various properties of the
modules they create; their main workspace within the
application. This feature was completed in week eight.

5. The system should have a mechanism which enables a Module
Support user to assign the role of Module Support to another staff
member.

Description:
A Module Support user should be able to share their admin
privileges with other UT staff members, generally to manage
other study programmes they do not focus on. This would be
done by associating the person’s UT credentials with our
system's Module Support access level. This feature was
completed in week eight.

6. The system should have a mechanism which enables a Module
Support user to assign the role of Module Coordinator for a specific
module to another staff member.

Description:
The Module Support is the one that assigns Module
Coordinators to selected modules for managing TAs. This
would be done by associating the person’s UT credentials with
our system's Module Coordinator access level. The abilities of
a Module Coordinator are identical to that of Module Support,
except for having access to a select few of the application’s
web pages, chosen by our primary Module Support
stakeholder, Ms. Holtkamp. This feature was completed in
week eight.

C. Could
1. The system could have a mechanism which enables students to add

and modify their personal information.
Description:
If we were to extend our user roles to support students who
want to become a TA, they would want to ease the workload of
Module Support and Module Coordinators by directly filling
out their student information in their profile, rather than filling
out a teacher’s form. Their modifications, however, would still
have to be checked by one such user. After weighing the
benefits and disadvantages, as well as the development costs
this feature would bring, given the project’s purpose, being to
increase the UT staff’s work efficiency, we do not consider this

17

feature important enough to be implemented within the initial
development cycle. Therefore, this feature was not
implemented, as giving students access to the system is out of
the project’s scope and set time frame.

II. Badge system:
A. Must

1. The system must have a mechanism which enables Module Support or
Module Coordinator users to assign badges to any of the students who
would like to become a TA for a certain module of an academic year.

Description
The concept of badges is primarily designed around efficiently
defining student study attributes and assigning them to those
who possess their characteristics. In practice, all students’
badges should be updated yearly by a user with their study
progress, except for those with conditional eligibility or newly
imported into the system. This feature was completed in week
seven.

2. The system must have a mechanism which enables a Module Support
or Module Coordinator user to assign badges to a module to define the
requirement options of its student eligibility.

Description
By assigning relevant study programme badges to each
module, users would be able to easily remind themselves what
possible attributes of a student should be taken into account to
become eligible for that particular module. This feature was
completed in week eight.

3. The system must have a mechanism which enables a Module Support
or Module Coordinator user to create badges inside a programme.

Description
We define badges as persistent attributes that a student either
does or does not have at any one time. These could be
completed trainings or hireability requirements, such as
needing a work permit or having completed enough faculty
courses. These badges would be created per study programme,
as the requirements could vary between them. We started by
making pre-built badges in the system through the Django
admin panel from week five to use for more important features
until badge creation could be handled in the front end. This
feature was completed in week eight.

III. Student management:
A. Must

18

1. The system must have a mechanism which enables a Module Support
user to see the list of all students applying as a TA within a programme
with their relevant study information inside a table.

Description
We completed this goal in week five simply by displaying on
the front end the written dummy data from Django’s admin
panel, though the overall aesthetics of our website were later
improved to fit the Figma designs.

2. The system must have a mechanism which enables a Module Support
or Module Coordinator user to see the list of students applying as a TA
for a module with their relevant study information inside a table.

Description
Much like the full list of students, our application must also
have a designated area for each module to display a table of
students filtered by their solicitation to labor in it. This feature
was completed in week five.

3. The system must have an option which enables a Module Support or
Module Coordinator user to search for a student by identifiers such as
their student number, full name, badges, and eligibility status.

Definition
In both the study programme and applied-to module-specific
tables of students, one must be able to filter the entries by
searching for certain student identifiers. We used the common
approach of implementing a search bar to this end. This feature
was completed in week seven.

4. The system must have a mechanism which enables a Module Support
or Module Coordinator user to perform eligibility checks for the
students in a certain module.

Definition
For every student in the system, whether they have been
imported or manually added, there are some fields attributed to
them for the module to which they have been assigned, such as
an eligibility status, with the option of conditional eligibility,
an eligibility comment, as well as a record of the source of the
student entry’s automatic eligibility creation. This feature was
completed in week eight.

5. The system must have a mechanism which enables a Module Support
or Module Coordinator user to select certain students to become a TA
for a certain module of an academic year.

Definition
From the front end’s available tables of students, one must be
able to select and deselect an array of students. This has later
proved useful in performing en masse operations with the

19

intended people, such as deleting them or exporting their
information. This feature was completed in week seven.

6. The system must have a mechanism which enables a Module Support
or Module Coordinator user to export a list of selected students with
their information such as their student number, full name, study
programme, comments regarding their possibility of becoming a TA,
and their eligibility status into an Excel spreadsheet.

Description
Selected student data must be able to be exported at the press
of a button in a table as an Excel file, to be compatible with
other university data processing systems. This feature was
completed in week eight.

7. The system must have a mechanism which enables a Module Support
or Module Coordinator user to import a list of students who would like
to become a TA for a certain module of an academic year.

Description
That will be the primary method of adding new students to the
system, as asked for by the stakeholders. To the alternative of
manually creating student entries, importing people will only
be possible within a module list, as students only apply to
become a TA to one module at a time; therefore, this limitation
removes any potential confusion. Additionally, we leverage the
university’s LDAP system to fill in some pertinent information
automatically, solely based on student numbers. This feature
was completed in week eight.

B. Should
1. The system should have a mechanism which enables a Module

Support or Module Coordinator user to manually create, update, and
delete students from a certain module of an academic year.

Description
This feature was less prioritized than importing a student list,
as the stakeholders currently handle their data in Excel files, a
common format for the distribution of tables, and have
expressed their desire for efficient spreadsheet transfer into the
system. Nonetheless, manual control is persistently vital for the
speed and simplicity of entry management. This feature was
completed in week nine, except for manually adding new
students due to time constraints and because the alternative of
importing users had a higher priority.

D. Could
1. The system could have a mechanism to automatically gather all

relevant student information from Osiris into the application for
Module Support or Module Coordinator users.

20

Description
With OSIRIS, we can automatically extract more extensive
student information than LDAP. However, gaining connective
access to the platform is considerably more difficult, so we
have left this as a feature we could implement after the
application’s release.

2. The system could have a mechanism to automatically determine if a
student passed the first year, has 60 EC, or has passed a specific study
unit for Module Support or Module Coordinator users.

Description
By leveraging the breadth of data OSIRIS offers, it would be
possible to mechanize the determining process of such queries.
Given the requirement for such a feature, it follows that it can
only be achievable after the previous user story's
implementation.

3. The system could have a mechanism to archive students.
Description
Student information should be archived once out of general
use, such as for those who graduated or dropped out of the
university. This could be executed manually by a Module
Support, or automatically with an established connection to
OSIRIS.

IV. Student jobs:
A. Must

1. The system must have a mechanism which enables a Module Support
or Module Coordinator user to view all student jobs from a selected
module.

Description
Each module must also have a designated area to display a
table of its students’ jobs. This feature was completed in week
five.

2. The system must have a mechanism which enables a Module Support
or Module Coordinator user to import within the system a list of
students, their job period, and their total work hours so that a job
would be automatically created.

Description
Just as with importing students by their student numbers, jobs
can be imported through a few details. However, the given
details don’t have to be correct until a Module Support checks
their validity. This feature was completed in week eight.

4. The system must have a mechanism which enables a Module Support
or Module Coordinator user to export a list of selected student jobs.

Description

21

Student job information must be able to be exported for
transferral to one of the university’s other applications to be
officially formatted and signed as a contract. The date of such
exports is recorded to ease contract history administration,
profitable in clearing up potential mix-ups. This feature was
completed in week eight.

B. Should
1. The system should have a mechanism which enables Module Support

or Module Coordinator users to manage a job from a selected module
for a student, specifying the contract’s start and end dates and their
total hours, out of which total weekly hours are inferred.

Description
Student jobs must be able to be created, updated, and deleted
from the front end within a module. While the weekly hours
are derived from a specific formula, we started by dividing the
total hours by the number of hours in work days between the
selected date interval. Later in development, our team could
have received the actual formula to replace the placeholder
mechanism. However, this was left for after the project’s
submission deadline. This feature was otherwise completed in
week nine, except for manually adding new jobs due to time
constraints and because the alternative of importing jobs had a
higher priority.

Non-functional requirements:
A. Must

1. The system must be available at all times.
Description
The application should not crash or be out of service. In other words,
the system has to be available at all times. Naturally, new features may
introduce issues during development, and the system's optimizations
continue until its release, so our team must stay wary in maintaining
system availability and reliability throughout its course. As far as we
have tested, there are no threats to the system such that this
requirement isn’t fulfilled.

2. The system must have good privacy and security features.
Description
The system should implement basic security practices and be deployed
as a Docker container on the University of Twente’s servers for
increased security. This feature was completed in week ten.

3. The system must have the entire front end loaded at once for increased
browsing fluidity.

Description

22

The system must have the front end loaded at once for increased
browsing fluidity, through a SPA. Since such a feature is a part of the
initial design, it was present from the early stages of front-end
development, even from week five, when the front-end groundwork
was set.

4. The system must be able to work with incomplete information.
Description
Where possible, table entries should support leaving as many fields
empty so a user can save their progress at any time and return later to
complete their work. Though this was an ongoing feature to implement
throughout the system in the front end, the back end architecturally
supported this from week five, when we set the front-end groundwork.

B. Should
1. The system should have good usability, achieved through simplistic visuals

and a user-friendly design.
Description
Using a similar aesthetic to other systems from the university’s suite
has offered the application a sense of familiarity and follows the same
visual design principles. While the design of the front end was done in
week three, the continuous development of the final product has
occasionally changed some aspects.

C. Could
1. The system could have the feature of light and dark mode.

Description
Different luminosity modes are popular color scheme styles that could
increase enjoyment and comfort for many users. However, they had a
lower priority than the other vital non-functional requirements, having
fallen out of the initial development cycle’s scope.

23

Chapter 5

Global design
This chapter presents and defends the high-level design decisions made throughout
development. Additionally, its second half outlines blueprints of the system’s web page
content structure.

5.1 Global Design Choices
The purpose of the system is to decrease work redundancy in the TA hiring process by
aggregating module-specific applicant data, divided by user access, and storing it for more
accessible and efficient management: to Module Support first and second to the Module
Coordinator. Chapter 2 has revealed the current processes and procedures, which this chapter
expands upon with their updated replacements.

5.1.1 Revised Work Procedure
Chapter 2.5 analyzed the current activities, identifying many logistical issues between
Module Coordinators and Module Support. In light of the stakeholders’ proposed project
task, depicted in Figure 5.1, the TA hiring process has not reached peak efficiency, not
addressing the indefinite loop across the two primary roles using the system, but yet offers
great flexibility in task preference of the new approach and cuts down the overall workload
of Module Support by minimizing repetitive endeavors. Firstly, while the distinctions
between roles remain, each member may choose to assist in some way the opposing group.
The system separates Module Coordinators from Module Support based on access to general
study program web pages and data, alongside management privileges granted to different
modules, but not based on their features. Therefore, users are only limited by factors outside
the application, thereby supporting any permission exception. On that note, the stakeholders
hold the future dispersal of user responsibilities in "good faith," resorting to a simple
authorization retraction to those who misbehave, a fact that lifts this burden off the system
and onto the administrative users. Second, since all registered students' data is saved in the
new system, Module Support need not check its validity, except for new student entries and
occasional updates, the latter of which generally happens once a year. Besides these
modifications, the general workflow remains identical, which should ease the system’s
integration into the users’ onuses.

24

Figure 5.1: The updated activities of all participating agents in hiring students as TAs.

5.1.2 Architectural Design Choices
This sub-chapter delves into the strategic decisions driving the architectural design of the
project. Each choice was carefully considered to align with the overarching goals of

25

promoting modularity, enhancing user experience, ensuring data flexibility, and optimizing
the development and deployment processes.

5.1.2.1 Separation of front and back
Since the project was developed by a team, separation of concerns was inevitable. One of the
ways the team did this was by separating the front and back ends of the application. This
enables modularity, relaxes merge conflicts in the version control, and enhances overall
maintainability.

5.1.2.2 Single-page application (SPA)
We decided to adopt a single-page application (SPA) architecture for our solution to
streamline user interaction and enhance efficiency. This decision came from several
considerations.

First and foremost, SPA architecture offers a more fluid and seamless user experience by
removing the need for a page reload during navigation through the application. With our
application, the module supports and coordinators can access functionality, such as managing
upcoming TAs or adding a new badge, without experiencing interruptions or delays
commonly associated with traditional multi-page architectures.

Additionally, SPA architecture leverages client-side rendering and data retrieval techniques,
allowing faster and more efficient data processing. By dynamically updating content without
refreshing the entire page, our solution offers real-time access to up-to-date data.

5.1.2.3 REST API
For the application to interact with the database, we decided on the REST API interface. A
few of the main reasons for such a decision include the interface's simplicity and data
flexibility, as well as the team’s and client’s familiarity with the subject.
By adhering to the REST principles, we ensure modularity, maintainability, and alignment
with established best practices, which improves the backend’s maintainability.

5.1.2.4 Docker
Since the system is meant as a tool for Module Support and Module Coordinator officers,
deploying it on the university’s infrastructure is an obvious choice, both for security and
convenience. Docker helps to ensure the integrity of the project, as well as test deployment
stages locally, which increases development efficiency.

5.1.3 Technological Stack
In this part of the report, we will discuss what frameworks and libraries we are using and
why we chose them. As our application is split into frontend and backend, we will discuss
those parts separately here as well.

26

5.1.3.1 Frontend:
The first, and most important framework that we will be using is Vue, which is a JavaScript
framework for building user interfaces. It builds on top of standard HTML, CSS, and
JavaScript and provides a declarative, component-based programming model that helps you
efficiently develop user interfaces of any complexity. Its component-based architecture
promotes reusability, making development faster and more efficient. This is very useful and
helpful as we are building a single-page application, all the mentioned features just make the
development process easier.

Another important framework that we used is the Vue Component Framework (Vuetify). It
is directly connected with the Vue framework and it allows us to create small modules to be
used and re-used throughout an application. Vuetify is a collection of pre-made components
paired with powerful features such as dynamic themes, global defaults, application layouts,
and more. This framework is very useful when it comes to adding and adjusting any user
interface components.

Second, we decided to use Axios which is a promise-based HTTP Client for node.js and the
browser. We use it to send different HTTP requests to the backend.

Third, we used Xlsx which is an open-source solution for extracting useful data from almost
any complex spreadsheet and generating new spreadsheets that will work with legacy and
modern software alike. It is extremely useful as one of the requirements is to import and
export Excel Sheets in and from the system.

Fourth, we used Selenium which is an open-source umbrella project for a range of tools and
libraries aimed at supporting browser automation. It provides a playback tool for authoring
functional tests across most modern web browsers, without the need to learn a test scripting
language. We used it to test the front end properly.

5.1.3.2 Backend:
The backbone of the system is built using the Django REST framework. There are multiple
reasons why this was the choice. First, Django has an extremely convenient admin panel for
the database. Second, the data model is configured via Python objects, which eliminates the
need for a separate database manager and allows one to choose an appropriate database type
for the purpose. In our case, since the database is fairly small, we settled on the SQLite3
format. It is the default Django option and the project does not need anything more complex.

University tools must be accessible with the university's credentials. Microsoft is the
credential provider of choice, it uses the SAML 2.0 standard. So, we have implemented login
functionality using python3-saml-django. Besides complying with this requirement, SAML
2.0 facilitates single sign-on, which means that users can seamlessly use the application
alongside other university tools, without having to log in to each service.

27

In conjunction with the SAML library, OKTA was chosen as an identity provider. University
gives access to authentication systems only for mature apps for security and reliability
reasons. Additionally, having the production identity provider redirect to localhost, which is
needed while the system is in development, is not possible for the aforementioned reasons.
To solve this we set up OKTA to mimic Microsoft’s implementation as much as we can. This
allows for an easy swap of the identity provider by simply changing the link in the Django
settings file.

Students are usually identified simply by their assigned university id, called “ut id”. Because
not every student will be in the system it is nice to reduce the amount of needed work from
the module support by populating known data, namely name, surname, and email address.
For this purpose the university’s lightweight directory access protocol (LDAP) system was
integrated, using the ldap3 library. Making the system require less manual labor.

Documenting API is extremely important. It helps both current and future developers to keep
track of which features are done and how the algorithms work internally. For this purpose,
we decided to use the django-rest-swagger library and its dependency drf-yasg. Swagger
automatically creates an overview of all calls present in the system, which simplifies the
development process. The developers can easily identify unnecessary calls, as well as notice
missing calls from the list.
Swagger has the additional benefit of being interactive. Not only does it state existing calls,
but also allows the developers to easily execute and test the call response for correctness.
This is useful for validating the appropriateness of the newly created code and manual testing
of the calls.

Visualizing the data model is both important for overall understanding of the system, and a
manually intensive task. So, to streamline this aspect we used django-extensions and
graphviz libraries. It allows us to create a class diagram of our data model using one
command. We made use of the diagrams during development, for intermediate feedback, and
in the report, to show the final version.

5.1.3.3 Deployment
Django has a built-in server, which facilitates development steps, however, the server
provides the bare minimum for its use case. It is single-threaded, not scalable, and lacks
some necessary security features, such as SSL termination, rate limiting, and access control.
To address these issues, the following libraries were chosen.

Gunicorn takes the responsibility of managing user requests and executing Python code.
Which in turn allows for many concurrent users without the performance hits. Additionally,
Gunicorn enables easy horizontal scaling if that becomes necessary for the application.

28

The use of Gunicorn, unfortunately, doesn't resolve all issues of the Django deployment
server. So, an additional library, namely NginX was introduced. NginX acts as a load
balancer, SSL decryption point, and server of static files. This reduces the load on other parts
of the system and blocks bad requests before they can reach the processing point.

Docker allows us to encapsulate all necessary components into a self-contained, easily
deployable package. By containerizing our Django application alongside Gunicorn and
NginX, we create a cohesive environment that promotes consistency and reliability in our
deployment process. Docker keeps our application separate from the underlying system,
reducing compatibility issues and making it easily fit within the university’s infrastructure. It
simplifies managing dependencies and speeds up deployment. With Docker, our application
follows the university’s standards and ensures better performance with optimal use of
resources.

29

5.2 System Pages
As this application will serve as a replacement for Microsoft Excel, we had to carefully
analyze the current workflow and come up with the design that is going to optimize the
process. Initially, all data was presented in one Excel sheet, which is very inconvenient and
cumbersome. We decided to split all the data into 3 logical parts (pages): “Module
management”, “Student list” and “General data”. Before we get into details it is important to
mention that all the pages are program-specific. It means that before the user can see any of
the pages they have to choose a program, on the top right on Fig. 5.2.1, they are working in,
so they don't see irrelevant information. Images for each page are included in Appendix B.

Now let us break down the purpose of each page:

5.2.1 Module Management Page
The “Module management” page is what the user interacts with when they need to process
TAs for the module the user is responsible for. When the user needs to add TAs that have
applied for a module, they don't want to see any information related to other modules. Due to
that, the page serves the purpose of working with a specific module.
When the user first enters this page before they can see any data they have to choose a year
they are working in and a specific module. Year selection is crucial as modules repeat every
year and we need a specific one to display the data. After the user has chosen a year and
module they have 3 “tabs” to choose from: “Applications”, “Student Jobs” and “Module
Settings”. Each serves a unique purpose in the process of TA enrollment.

5.2.1.1 Applications Tab
The first tab - “Applications”, shows the list of applicants for the selected module and
contains all the data required to determine if the applicant is eligible or not. Applicants are
the students who have applied to become a TA for the module the user is responsible for. By
interacting with this page the user can import the list of student numbers of applicants (in an
Excel format - one column of selected s-numbers of students) and then for each student they
can assign badges and determine whether a student who applied to be a TA, is eligible or not.
As the user has finished the process they can select applicant records in the table and export
them as an Excel file. All the info that the user has filled in for the students is saved and will
be shown on this page by selecting the same specific module. Furthermore, in our
application, any modification to the data is saved and organized. Therefore, if a change was
made to a student in one module, it would reflect in all the other modules this student is
present in. Unlike Excel sheets, if a user has multiple tables, they wouldn't be able to
preserve the student information between them.

5.2.1.2 Student Jobs Tab
The second tab - “Student Jobs”, shows all the students who were chosen by a module
coordinator to be a TA for a selected module. It contains all the information relevant to the

30

work contract such as start date, end date, working hours per week, and total hours which are
made editable for the officers to be able to update information on job contracts. Similar to the
“Applications” page the user can import the list of students here. But on top of just importing
a list of student numbers, for this tab, they also need to determine students’ total hours and
include it in the imported Excel file (the required Excel format for creating jobs for
corresponding students/applicants could be examined in the figure below).

Figure 5.2: The required Excel format for creating student jobs indicating which students
need to work for how many total hours in a selected module.

Our reasoning for the creation of this page comes from the fact that all this information is
irrelevant to the user while determining eligibility.

5.2.1.3 Module Settings Tab
The third and last tab on the “Module Management” page is “Module Settings”. This tab
allows the user to modify any data that the representation of the selected module is built from
such as badges, start and end date, and name. It also has a button to delete the module.
Furthermore, as our application allows module coordinators to use the system to work on the
module they are responsible for, this page has a table of people who have access to the
module. To prevent the module coordinator from being able to give access himself, this table
is not editable, it is possible to delete records from it but not create new ones.

5.2.2 Student List Page
The “Student list” page is a place where the user can overview all the students in the system
of the selected program. That includes students who have been imported into “Applications”
or “Student Jobs”. The view of the page is taken by a single large table with student records.
By interacting with the search bar of the table, users can easily check whether the student is
present in the system. If the record is found, by analyzing its data the user can see how this
student was added to the system and, therefore find him on a “Module Management” page.

31

Moreover, it is the main place where the user can modify any information regarding the
student.
Unlike “Module Management”, “Student List” is not module-specific. We use this distinction
to show all the non-module-specific information about students like completed study units.
We are planning on including information about which modules the student has applied for
and in which modules they worked as a TA, however, the implementation will be done after
the report submission, so it is not present in the images in Appendix B.

5.2.3 General Data Page
The “General data” page is the central hub to observe and edit concepts used in the
application. To not overcrowd the view of the page we have decided to split it into “tabs”
similar to how “Module Management” is done. It contains 3 tabs: “Badges”, “Study units”
and “Accesses”.
Each of these tabs serves a similar function and possesses identical capabilities, yet operates
for distinct concepts. They consist of a table to overview the present data, a search bar to
easily find specific records, create a new record button, and delete selected ones.
Furthermore, every attribute in each table is modifiable for a pleasant experience of editing
the data.

Figure 5.2.1: Program selection and year, module, “tab” selection on the “Module
Management” page.

32

Chapter 6

Detailed Design

This chapter discusses all the low-level and important design choices in detail. The chapter
contains a detailed description of the data model, the structure of API calls, and the details of
both the user interface and the user experience parts of the front end. The chapter should give
the reader an understanding of how the system works from a technical perspective.
Additionally, it should give valuable insights into the visual aspect of the application and
explain the selection of specific interactive elements.

6.1 System Description

Figure 6.1: system overview

Figure 6.1 illustrates a complete overview of the system. Everything except the database is
encapsulated into one Docker container, while the database resides in a persistent volume in
order to keep information after application reloads and redeployments.

The first entry point is NginX which decrypts incoming requests, distributes work for the
workers in the next step, and forwards the HTTP request to the Gunicorn. After the request is
validated it is assigned to a Gunicorn worker which then executes necessary Django
functions via Web Server Gateway Interface or WSGI. The resulting response is propagated
back through the chain in the reverse order, ending with returning the HTTP response back to
the awaiting user.

The simplicity of such a setup increases maintainability and acts as a solid core for future
features and uses.

To see more information about the deployed application and necessary credentials please
refer to chapter 9.4.

33

6.2 Design Choices

6.2.1 Data model

Figure 6.2: The full graph with all class models.

Figure 6.2 encompasses the attributes of and connections between all data model classes. We
will cover each class to describe its purpose and use cases in detail.

6.2.1.1 Study Programme
The “StudyProgramme” class records the names of all study programmes in the system.
Consequently, due to the EEMCS faculty having requested the project, probable examples of
such names would be “TCS” and “BIT.”

34

6.2.1.2 Badge
The “Badge” class, or, more specifically, the concept of badges, is defined as optional but
permanent student attributes that can be dynamically created, updated, or deleted directly in
the front end. The design arose from the desire to support the concepts of having completed
specific training, passed the first academic year, gained a particular number of ECs, and
required a work permit; notions stored as name strings. While the concept of having passed
certain study units also fits in this permanence category and is represented in the front end
this way, study units are distinguished into a separate class in the back end to support
additional functionality.

Moreover, while a Module Support acts as an admin to the system, having access to all
programmes, they generally only govern the administration of one, relinquishing the
responsibility of others to different users with the same role. As a result, different users may
choose to define their badges distinctively, and separate programmes may have dissimilar
requirement sets. For these reasons, the decision was for badges to depend on a study
programme.

Furthermore, badges may be customized by color, icon, specified by name from a list, and
comment, for faster recognition and differentiation.

Figure 6.2.1: Partial class diagram including badge and all directly connected models.

35

6.2.1.3 Study Unit
The “StudyUnit” class represents year-independent modules, defined by name and their study
programme.

6.2.1.4 Module
The “Module” class is a year-dependent version of the study unit. Each entry inherits a study
unit, meaning a name and a study programme, as its base, with further details such as year,
start and end dates, and a list of badges. These badges act as a relevance filter in the front end
for student attributes to each module. They limit the available badges for viewing and
assignment to TA applicants.

Figure 6.2.2: Partial class diagram including Module and all directly connected models.

6.2.1.5 User Role
The “UserRole” class enables the bifurcation of role permissions between Module
Coordinator and Module Support officers. Each UT staff user has their university ID
recorded for identification purposes in role distribution. Currently, the system supports the
roles of “Module Coordinator” and “Module Support”, the former of which has a field for
module access assignment, whereas this will always be empty for the latter, as they have
admin access throughout the system. These two entry requirements are ascertained in the
front end, while the back end responds with an appropriate object based on a user and their
permissions. Moreover, a Module Coordinator has a different entry for each module access,
rather than a single entry with a list of modules. This design principle was chosen for
future-proofing, where new roles added may introduce modular permissions. While

36

imperfect, it is enough with the current implementation’s scope and a step in the right
direction.
The decision to use string fields instead of foreign keys to Django’s User model for the ut_id
was to make the task of assigning coordinators more streamlined. Using our solution, the
support can give permissions to the person by knowing their ID without the need to log in (or
create a user via the admin panel) beforehand.

6.2.1.6 Student
The “Student” class captures a lot of sensitive student information. After much deliberation
with the Module Support stakeholder, we have agreed that all mandatory and static student
attributes, as opposed to the concept of badges, that are recorded in the system, comply with
GDPR regulations. This fact is achieved by only handling and storing necessary data, which
is the case. Regarding good data retention, however, while students can be marked as
archived in the system, a proper storing mechanism still needs to be implemented.

Back to student information, the default stored fields are the student ID, first and last name,
email, nationality, studied study programme, and first study year. Additionally, UT staff users
can add comments directly to a student, pertaining by design to relevant supplementary
remarks to their study programme hire ability, not their eligibility to any specific module.

Lastly, there is also a distinction between “passed study units” and “badges,” two fields also
present in the “Student” class. In the front end, within a module management page, a user is
limited by viewing and assigning only the presently selected study unit, to avoid clutter, as
the other dozens of modules are extraneous to the deciding TA hiring factors for that module.
The needed distinction comes from the necessity to separate between normal and "study unit
badges;" while avoiding redundant data duplication when defining modules. Despite
presenting each study unit as a badge, users cannot modify or delete them as other badges,
and they are formed automatically in the front end based on back-end information. Also, it is
worth noting that a student passes study units and not modules, as the courses completed are
what matters, not their completion date or age.

37

Figure 6.2.3: Partial class diagram including Student and all directly connected models.

6.2.1.7 Applicants Import
The “ApplicantsImport” class pairs student TA applicants to a module. The basis for one of
their classes not including a direct reference to the other class’s entries is that each such class
defines a self-contained concept, and this approach improves the system’s readability and
modularity.

6.2.1.8 Student Module Eligibility
The “StudentModuleEligibility” class pairs a student and a module to assign some eligibility
properties to an applicant for a course. Such an individual can receive either of the following
four eligibility status types, specifically: "UNKNOWN" for newly entered participants in the
system, whom a Module Support officer has not yet checked, and "ELIGIBLE" for passing

38

all the module's hiring requirements, which does not imply being hired yet,
"CONDITIONALLY" for a student who does not pass the hiring requirements but is still
deemed a potential candidate, and "INELIGIBLE" for those with a declined TA application.
Moreover, the source of said status can either be "APPLICANTS" for new students imported
into a module as applicants, "JOB" for new students imported alongside their job details, or
"OTHER" for students that would be manually added in the system or as a base case.

Figure 6.2.4: Partial class diagram including Student, Module and StudentModuleEligibility
models.

6.2.1.9 Job
The “Job” class contains a student, a module, a start and end date, a field for total hours, and
one for hours per week, where "hours per week" is initially derived from "total hours" for
every job entry imported into the system.

6.2.1.10 Export
The “Export” class records the date and time of each group of jobs exported into Excel files
from the system.

39

6.2.2 API call structure
Every single model has CRUD operations implemented, many with additional parameters to
facilitate additional features. When it came to realizing the need for filtered outputs and
additional information in the response depending on the circumstance we heavily leaned
towards adding in query parameters. Depending on the value and if the parameter is present,
adjusting behavior and response accordingly. An alternative was to create new requests for
each additional response option, but we decided against that since in our opinion keeping the
request count low simplifies the system, and keeping all logically connected calls under a
single request with parameters was the more compelling option.

Moreover, responses also rely on the authenticated user. If the current user is module support,
they will have access to all information stored in the database. On the contrary, if the user is a
coordinator, they will be able to see and manipulate only information connected to their
module.

To see all calls and test them go to “*server ip*/docs” to see the Swagger page. Examples are
also provided in the Appendix C.

6.2.3 User Interface (Connect with figures)
The initial design was one of the starting points of our application. By working on it during
the requirement collection and project proposal phases, we were able to determine what
functionality and data we might need in the future. Working on the prototype made us
question each possible button and table, which at the end of work on the prototype, resulted
in a satisfying result.

The first page that one will see is the login page. After succeeding with the login, the user
will be able to see the application itself. It contains 3 main navigation tabs, which are
“Module Management”, “Student List” and “General Data”. The prototype for the “Module
Management” page can be seen in Figure 6.3. In this part we will not discuss the meaning
and the functionality of them and other solutions, we will do that in the “User Experience”
section, located below. For the “Module Management” and “General data” pages there are
multiple sections of data we need to display. To not overcrowd the look of the page and to
represent the distinction more clearly these pages have “tabs”, pages inside pages. This way
only one table can be displayed at a time and each of the tables has its data inside of it.

The selection of color schemes was straightforward. We decided to pick the same blue color
as the one used in “horus.apps.utwente.nl” as an additional color and selected a commonly
used dark gray hue for the background, which is prevalent in modern applications. Figure 6.4
shows the selected colors and their codes.

For the font, we decided to pick one of the “Google Fonts” available fonts designed by Dale
Sattler. The font is called Sulphur Point, it is a geometric sans serif typeface, with low

40

contrast stems, high x-height, restrained ascenders and descenders, and minimal optical
adjustments away from pure geometric form. This font is minimalistic and rounded, which
helps it exist in harmony with our selected color palette and design. Figure 6.5 illustrates the
font in different weights.

There were quite a few interactive elements that we were planning to use during the
prototype phase, such as drop-down buttons, buttons, and checkboxes inside the table rows
and a search bar for the table. While we kept the placements from the prototype, for the final
look of elements we had some concerns. Luckily we came around the idea of using a
component library - Vuetify, which has all of the necessary components in the same style.
This way we were able to keep stability in the design throughout the development, which
benefits a lot to the overall look of the application. Furthermore, due to the appearance of the
components we have decided to change our approach for the application design and have
preferred to adhere to mainly dark colors for the components.

Our design has slightly changed towards the completion of the system. This happened
because of the introduction of new functionality and the nuances of the Vuetify component
library. For example, the mock-up of the “Module Management” page looked like Figure 6.3,
while at the end it looked like Figure 6.6. The color scheme, font selection, and most of the
interactive elements stayed the same, but they became more minimalistic, clean, better
aligned, and peculiar.

Figure 6.3: Prototype of the “Module Management” page

Figure 6.4: Dark gray color with hex code “#252526” used as the main color, and the blue
color with hex code “#087CFC” used as an additional color in the application

41

Figure 6.5: “Sulphur Point” font example phrase in different weights

Figure 6.6: Final version of the “Module Management” page

6.2.4 User Experience
Our primary goal for enhancing user experience was to offer a more enjoyable interaction
with data compared to the current system, which is based on Excel use while retaining the
user's abilities intact. Excel by its nature is a big table with each cell being easily editable,
however, the experience of using it is greatly influenced by the structure of the data the user
is working with. If the data is inconsistent when certain records have some attribute, but
others don't, it leaves an empty cell in the row of records where these attributes are irrelevant.
This can make the table look incomplete and hard to distinguish relevant attributes.

6.2.4.1 Badges
To keep the ease of editing data in Excel we have decided to use table components as a main
way to show data around the website. This is due to the table component from Vuetify being
the best option to include inputs while keeping data structured and readable.

42

However, as we decided to use tables, we came to the same problem that Excel has when
displaying inconsistent data records. For this reason, we have come up with the concept of
“badges”. Badges are small pill-like chips with information representing student’s attributes
which can be assigned to students. This concept enables a user to assign an attribute to the
student without the need for it to be present in all other students. They are program-specific
but can be easily created, modified, or deleted on the General Data page. Furthermore, we
had to think of a way to represent all the badges to be able to assign them to students without
cluttering the view of each student object. At first, we thought of putting all the badges inside
the row, and the user would need to press on them to assign them to a student. However, we
have decided to change our approach, here is why. In Figure 6.7, you can see a view of a
single student record. Imagine if a program had ten badges and all of them would be shown
inside the record, some activated and some not. This would also create a cluttered look,
similar to Excel. So, we have conceived to have a sliding panel that would have all the
badges and if users want to assign a badge to a student they can simply drag and drop a
badge to the student's row.

Figure 6.7: Badges panel and badges assigned to a student on the Module Management page,
Applications tab

6.2.4.2 Information relevance
Another design decision we had to make was based on how we wanted to build our data
model to save information on students. We thought of a way to make it more structured
compared to the Excel example sent to us by Module Support. We have noticed that the file
contains all the students who have ever applied to save their information for future use,
which is a good way to avoid retrieving the same student multiple times. However, as it is
also the same place where Module Support decides on the eligibility of students, the view is
cluttered with all other students who have not even applied to a TA role in the current
module. Therefore, we have decided to limit the view of the data to a specific module, to
display only relevant information while deciding on eligibility. As modules repeat every year
we had to formulate a strategy of distinguishing them. For that matter, modules are connected
to study units by inheriting their name, but the year is different, so a specific module is a
combination of year and study unit.

6.2.4.3 Import and Export
In addition, from the beginning of our project, we acknowledged the possibility of a module
coordinator using our system. However, we also recognized that some of them may be
unwilling to do so. If so, module support and module coordinator would keep information

43

exchange through Excel files via email. We needed a way for Module Support to easily put
records from Excel to an appropriate table and after modifying it in the application, send it
further as an Excel. For this reason, the “Module Management” page in the tabs
“Applications” and “Student Jobs” tables have import and export functionality. Users are
able to import data to the table or select records and export them. Furthermore, as our
primary objective is to reduce the amount of manual work done by the users of the system,
when students are imported into the system, we are using a connection to LDAP (system by
which we request information from the university described in chapter 5.1) to retrieve data
that is available for the student and fill it automatically.

6.2.4.4 Storage and state management
Moreover, we have included a storage and state management feature in the application. The
main reason for this is to improve the user experience while using the application. By saving
data such as settings that the user has chosen on the pages, and the information required for
authentication we minimize repetitive steps while working with the application. For example,
without this feature, if the Applications tab on the Module Management page would be
reloaded, the user would need to select program, year, and module again. By saving some
server variables in the front end on application load we reduce the total amount of API calls
made while the application works to keep the application fast and its latency small.

44

Chapter 7

Testing
This chapter is dedicated to the testing of our system. The testing is split into two parts:
frontend testing and backend testing, as they were tested in very different ways. The frontend
testing plan includes the scope of testing, mentions the used framework, and describes
different testing scenarios. The test results are then presented and analyzed. The backend
testing plan explains how and why the tests are divided into specific categories, explaining
the scope and purpose of each test. Results include an analysis of what the success of each
test implies, as well as how the system could be tested in the future

7.1 Test Plan

7.1.1 Frontend Testing Plan
The purpose of this test plan is to ensure the quality, functionality and correctness of the front
end of our application. The tests will cover different aspects of the front end, starting from
the login page and ending with the correctness of module creation…

Scope
This test plan covers testing of the Vue.js, HTML, and CSS frontend application developed
under the name of “TA Database”. The test will include only a desktop view, as it was not
required for the application to work on any other devices. All the tests will be conducted in
the browser Google Chrome with a default scoping of 100 per cent.

Testing framework
Testing the front end is a very time-consuming and difficult task to execute properly. For this
purpose, we had to select a specific framework that is effective and efficient. There is an
open-source project aimed at supporting browser automation, which is called “Selenium”.
We decided to base our frontend testing on it because it executes tests quickly and accurately,
reducing the likelihood of human mistakes and ensuring consistent test results.

There are several test cases that we prepared to test the most possible aspects of the front
end.

45

User Interface Testing
One of the first and most obvious aspects that we are testing, is the functionality, and
presence of the specific UI elements. This is done via our selected framework. If any of the
tests do not execute till the end, that indicates that there is a problem with finding or
interacting with a UI element that is used throughout the specific test. The tests show if the
element is not present or not interactable, in case that is the cause of failure.

Functionality Testing
There are several workflows that we are testing with Selenium.

First, we are testing the functionality of the login page and the logout button. The test is
trying to log in with a specified OKTA account and if the login is successful, it logs out
immediately. The test requires being connected to the University of Twente network or to be
connected to the eduVPN (University of Twente). The purpose of the test is to see if the login
page is functioning and redirecting correctly, check if the okta credentials are still valid and
authorization works, and check if the logout button properly sends requests and cleans
cookies. The successful test execution should leave the testing environment on the login
page.

Second, we are testing the “Module Management” page. This test bypasses the login
sequence, as it is tested separately, and uses the “bypass login” button that is only available in
the development environment. The test checks if the different data tables are displayed on the
pages. The purpose of the test is to test the navigation of the system, the module selection
and academic year drop-down buttons, and the data table mode navigation.

Third, we are testing badge creation and removal. That is part of the functionality of the
“General Data” page. This test also bypasses the login sequence and immediately goes to the
relevant page, clicks the “Create badge” button, and fills in the opened dialog. After creating
the badge, it compares the amount of badges in the system before and after creation. The
initial amount should increase by one. After comparing, it removes the created badge and
checks the total amount of badges again, now it should be the same as at the start. The
purpose of this test is to see if the tables are updated properly and if all the data contained in
them is up-to-date.

Fourth, we are testing the assignment of badges to a student on the “Module Management”
page. This test also ignores the login sequence and immediately navigates to the mentioned
page, opens the badge panel, and drag and drops one of the badges to the first student in the
table. Then the test verifies that the student now has a new badge with the same ID as the one
selected from the panel. The purpose of the test is to verify the correctness of the
drag-and-drop approach to the badge assignment and to check if the badges are updated in
the data table in real time.

46

7.1.2 Backend testing plan
To ensure the integrity of the API calls we devised four categories of tests, each serving a
specific purpose ensuring reliability, resilience, security, and functionality. All tests were
implemented via the integrated Django testing framework.

Basic tests:
● Objective: Validate the functionality of HTTP requests on all Django models.
● Scope: Test CRUD (Create, Read, Update, Delete) operations on each model,

ensuring that data can be manipulated correctly via HTTP requests.
● Coverage Criteria: Aim for full coverage of basic CRUD operations for each model.
● Examples: Test creation, retrieval, updating, and deletion of model instances via

HTTP requests.

Error tests:
● Objective: Verify that API calls return appropriate errors and handle exceptions

gracefully.
● Scope: Test scenarios where erroneous input or conditions may occur, ensuring that

the system does not break and responds with the correct error messages.
● Coverage Criteria: Cover a range of potential error scenarios, including validation

errors, database constraints, and unexpected inputs.
● Examples: Test error handling for invalid input, database integrity errors, and

server-side exceptions.

Access tests:
● Objective: Validate appropriate access controls for module support and module

coordinators.
● Scope: Test user permissions and access levels, ensuring that module support and

module coordinators can perform their designated tasks without unauthorized access.
● Coverage Criteria: Cover all roles and permission scenarios.
● Examples: Test appropriateness of information given for module support and module

coordinators. Module support should have access to any information, while
coordinators must be restricted to their respective modules.

Integration tests:
● Objective: Test the integration of multiple components and requests involving

multiple tables.
● Scope: Validate sequences of the API calls that often will be used together in a

typical use case, focusing on scenarios where data manipulation across multiple
tables is necessary.

● Coverage Criteria: Cover integration points and data flow between models, ensuring
that import requests function correctly and maintain data integrity.

● Examples: Test user login and confirm that the user is authenticated.

47

Our strategy is to run the test regularly during development, especially when working on a
new feature, as well as before each deployment. To enforce testing, we used GitLabs ci/cd
pipeline, to run automated tests on each push request.

7.2 Test Results

7.2.1 Frontend testing results

Testing environment
All the front-end tests were conducted with the functionality of the Selenium framework.
Here are more specific execution details:

- Operating System: Windows 10;
- Browser: Google Chrome (Automation mode), version: 124.0.6367.60/61;
- Devices: desktop, laptop;
- Window scale: 100%.

Testing results
- Login and logout: executed correctly;
- Module Management page: executed correctly;
- Badge creation and removal: executed correctly;
- Badge assignment to student: most of the time executes correctly.

Summary
The Vue.js frontend application has been partly tested and meets the specified requirements.
Almost all test cases have been executed successfully, only one test scenario is not executed
correctly due to imitation of drag & drop action throughout the Selenium framework. Minor
issues were discovered during testing and have been logged for resolution in the future.

All in all, many other tests can be written to test different aspects of the front end, but even
with the automation framework, the tests are very time-consuming and difficult. One small
change in the visual part of the system can stop all tests from executing correctly. Our
conclusions after testing are:

- Create more deep and detailed tests;
- Use current tests in the development environment to check the correctness of the most

important functionality of the system;
- Optimize tests and make them future-proof.

7.2.2 Backend testing results
Testing environment

48

All backend tests are implemented using Django's testing framework. Each test class is
inherited from ‘APITestCase’ with setups for test data.

Testing results
- Basic tests raise no issues, which indicates solid ground for future features.
- Error tests validate the appropriateness of error codes, making the system resilient to

errors and informative in its error messages.
- Access tests are complete without errors and with expected outputs, giving us

assurance in the correctness of access levels.
- Integration tests execute all necessary steps flawlessly, confirming the validity of the

implementation.

Summary
All crucial aspects and developed features of the system are successfully tested. Validating
the implementation and giving reasons to be sure of it.

Conclusion
Despite all tests executing with no errors, many other aspects of the system could and highly
likely should be tested in the future. Metrics like time performance or resource intensity are
not relevant for the application now due to the small target user base. However, this might
not always be the case.

Additionally, with the introduction of new features, new error, integration, and access tests
must be written. While updates to the data model might require adjusting or adding tests to
reflect new changes.

49

Chapter 8

Future Planning

8.1 Utilization and Support of the System
The developed application is not perfectly polished and lacks some built-in hints to help
users navigate through the functionality. Therefore, one possible future improvement could
be creating hints in the application which could help users orientate around the website. In
addition, a manual which contains information about how the overall web application can be
written from the perspectives of both Module Support and Module Coordinator officers could
be constructed by providing details about the use cases of the web pages.

8.2 University-wide Enrollment
Currently, the functionality of our application is adapted to the needs of the EEMCS
department, and TCS and BIT programmes, to be more specific. This leaves a lot of space for
future improvements, as we have not gathered any requirements from the Module Supports
and Coordinators of other faculties and programmes. Such requirement gathering could
provide a lot of valuable insights and the potential to implement new features.

The purpose of the application would not change with new requirements, but its functionality
would expand, which might make it more complex. This will lead to a need to implement our
first future improvement.

8.3 Expanding access to the system
From the beginning of the developing requirements for the system, we counted on Module
Support and Module Coordinators being the sole users of it. However, as we got to know the
full flow of the current process from the Module Support, we have noticed that even with our
system process still requires Excel file exchange on the step of student information gathering.
Moreover, during presentations about the progress we've made, students have provided
feedback indicating their willingness to use the system. They would appreciate it if the
system could store the information they input in their TA applications for each module they
apply to.
For that reason, we have thought of a “Student” role in the system. With this in mind,
applying to become a TA, availability scheduling, tracking the progress of the application
process by the student, and even communication between students and Module Support could

50

be done through the system in the future. It would significantly reduce the need for file
exchange and the chances of missing any data while doing so.

8.4 Remainder Requirement Integration
There are still a few requirements that were unable to be implemented due to the complexity
and lack of time. Now we will go over the requirements that were left over and discuss them.

First, we did not implement the requirement to archive students who graduated or dropped
out. This is an important possible future improvement, as it is required by GDPR, which
states that the system should only store relevant data or have it stored adequately.

Second, we have not implemented a feature that could be done on the Student Jobs tab on the
Module Management page is the calculation of hours per week, which is done through the
form on the university HR website in the current system. However, due to a lack of time and
difficulties in connecting to the HR system, we haven't implemented the calculation but
allow the user to modify the field. By connecting our system to the HR system we could
avoid the need for Module Support to use another system, consequently improving user
experience.

Third, the current logging system could be improved for easier tracking of user actions.
Currently, the Django REST framework saves all user API calls with timestamps, but this
format of logs is not practical as it contains too many details. One of the improvements could
be to refactor Django REST logs or to log the actions on the server side by ourselves, which
would allow us to have an adjustable logging system.

51

Chapter 9

Evaluation
This chapter will evaluate the project’s planned direction and progress, state the assigned
team member responsibilities, and conclude with an introspection on the final result.

9.1 Planning
We planned biweekly stretch goals, at the end of which took place a Peer Feedback Session
to showcase our progress and receive critical advice on our work. All tackled requirements in
Chapter 4 have followed this timeline for their components in planning. However, the full
completion of some has deviated from their proposed deadline due to certain features taking
longer than expected and having handled extraneous work to the project during the module:
Week 1 - stakeholder introduction & requirement round-up
Week 3 - front-end Figma design and back-end groundwork & project proposal and planning
Week 5 - front-end groundwork and back-end finalization & test plan
Week 7 - application’s front-end core features’ functionality & testing beginning & design
report
Week 9 - feature polish and transition to production & testing finalization
Week 10 - project and poster presentation & system and report finalization and distribution

Intermediate goals were established weekly with the supervisor and updated in group
meetings when necessary. Testing was done alongside development.

9.2 Responsibilities
The group members have chosen the sections they feel most comfortable working on, and
each has agreed with the others’ decisions while considering the workload proportions
divided among ourselves. While we have generally stuck to the following distribution of
responsibilities, the frequent discourse has ensured an adequate integration between each
component:

Front end: Arda Konça, Mark Troicins, Vladislav Mukhachev
- Design: Mark Troicins, Vladislav Mukhachev
- Design implementation: Arda Konça, Vladislav Mukhachev, Mark Troicins
- API Request handling: Arda Konça, Vladislav Mukhachev
- Testing: Mark Troicins

Back end: Ervīn Zvirbulis, Marius Pană
- Authentication: Ervīn Zvirbulis
- Data Model: Marius Pană
- Building API Requests: Ervīn Zvirbulis, Marius Pană

52

- Deployment: Ervīn Zvirbulis
- Testing: Ervīn Zvirbulis, Marius Pană
- Swagger documentation: Ervīn Zvirbulis

All five group members contributed equally to the Design Report by documenting their work
and splitting shared topics. Likewise, participation in the bi-weekly presentations and
stakeholder meetings was also a joint effort.

9.3 Team Evaluation
Most of the time our team looked and progressed in the same direction, but not everything
was perfect. There were many cases of miscommunication or lack of communication which
led to each of us having slightly different visions of the requested features or the ways to
design and implement them. This led to some small conflicts inside of the team, but the
conflicts resolved quickly and everybody was able to agree on something. We did not
dedicate any time to having special team evaluation sessions, but those maybe could have
been useful. There were no serious disputes during the project, and in the end, the team is
satisfied with the results and the spirit that has been with us throughout this time.

We could have had more structured and strict planning, could have better split some
responsibilities, and could have better used some of the feedback from the supervisor. We are
not perfect, so such problems are normal, though we should always strive for the best.

9.4 Final Result
The system exceeds the status of an MVP, having implemented all the must requirements,
and the client is pleased with the final result. But despite that, there is always room for
improvements in how the system could further extend its current functionalities. For that
reason, chapter 8 has been contemplated as the steps that could be considered to further
enhance the ease of usage and the benefits of the proposed system.

To see the deployed application go to https://tadb.apps.utwente.nl/.
Okta usernames:

● Module support: s@m.com (full access)
● Module coordinator: c@m.com (access limited to assigned modules)
● Student: fs@m.com (no access, but can log into the system because of the use of

university credentials)
Password is the same for all: TestIWantTo .
Keep in mind that the deployment is not 100% stable, if the system shows any signs of
unexpected behavior, please, reload the page.

Due to the limitation of using developer OKTA accounts, it does not always work on the
deployed prototype. Alternatively, the login page allows to bypass the identity provider and

53

https://tadb.apps.utwente.nl/

gain access as a module support. The final production version will have such functionality
removed.

9.5 Conclusion
As previously indicated, to avoid the privacy, resilience, and efficiency deficiencies with the
current methodology of UT staff in managing students to hire as TAs, it has been decided to
come up with a proposed web application system which allows Module Support and Module
Coordinator officers to easily determine the eligibility of applicants and arrange the number
of hours the students need to work within a module. The proposed application at the end of
the project works in such a way that the officers could log in to their OKTA account to let the
system be aware of their user roles, and accordingly, the officers only see the relevant pages
of the web application. On top of that, the application has the main functionality of whenever
an officer imports a TA applicant, the officer can edit and assign them their attributes, the
previously mentioned badge concept, and the information related to an applicant gets stored
in the designated page (Student List) automatically by the system, where their information is
always accessible and editable by the appurtenant officers at any time. This is done in an
approach that saves the applicant’s information - which can be related to their eligibility or
job details; right away. Furthermore, considering development progress, the proposed
system’s expected functionality is ready and can already be observed in the deployed web
application. However, there still are some additional features, covered in Chapter 8, that
could still be implemented in the system to further improve the serviceability of the overall
system.

Lastly, it is important to highlight that besides the advantages of users utilizing the proposed
application - its primary purpose, the developers gained much knowledge from their work on
the project. We wrap up the written report by stating they learned to work within the
provided frameworks from scratch and developed their time management, teamwork,
problem-solving, and collaboration skills.

54

Appendices

Appendix A.

Figma Design Mock-ups

Figure A.1: Mockup of the Module Management page with some comments from the
supervisor.

Figure A.2: Mockup of the Student List page with some comments from the supervisor.

55

Figure A.3: Mockup of the Student List page with some comments from the supervisor.

56

Appendix B.

Final Design Pages

Module Management

Figure B.1: Final design of the Applications tab on the Module Management page.

Figure B.2: Final design of the Student Jobs tab on the Module Management page.

57

Figure B.3: Final design of the Module Settings tab on the Module Management page.

58

Student List

Figure B.4: Final design of Student List page with first student row expanded.

Figure B.5: Final design of Student List page with first student row expanded and Badge
Panel open.

59

General Data

Figure B.6: Final design of the Badges tab on the General Data page.

Figure B.7: Final design of the Study Units tab on the General Data page.

60

Figure B.8: Final design of the Accesses tab on the General Data page.

61

Appendix C.

Swagger Screenshots

Figure C.1: Showcase of the list of API calls.

62

Figure C.2: Template/structure for the POST requests (/api/add_applicants in this case)

Figure C.3: Returned response of call /api/add_applicants.

63

Figure C.4: Example of a call with options.

64

